Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dielectric spectroscopy of Ba(B1/2′B1/2========Prime;)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies (102-1012 Hz)

Identifieur interne : 001317 ( Russie/Analysis ); précédent : 001316; suivant : 001318

Dielectric spectroscopy of Ba(B1/2′B1/2========Prime;)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies (102-1012 Hz)

Auteurs : RBID : Pascal:95-0236441

Descripteurs français

English descriptors

Abstract

Dielectric spectroscopy in the submillimeter, millimeter, microwave, and radio frequency range has been performed between 300 and 600 K (for some cases below 300 K) on nine Ba(B1/2B1/2========Prime;)O3 complex perovskite ceramic compounds. The real part of the permittivity ε′ decreases linearly with the increasing tolerance factor t<1 approaching unity. It is insensitive to imperfections in the ceramic, such as impurities, vacancies, etc., and entirely determined by polar lattice vibrations. Its temperature dependence is influenced by the presence of a structural phase transition observed in six of the investigated compounds. It is shown that the imaginary part of the permittivity ε========Prime; in the submillimeter range is mainly of intrinsic origin. The ε========Prime;(f) dependences were fitted applying a microscopic theory using polar-phonon parameters that have been determined in the phonon resonance region by infrared reflection spectroscopy (Part I). The theory allows the extrapolation of minimum intrinsic loss due to polar-phonon contributions down to the microwave region. The difference between the extrapolated and measured loss at 10 GHz is due to other intrinsic and extrinsic contributions gaining importance at lower frequencies. The submillimeter measurements reveal a systematic loss decrease with the tolerance factor approaching unity (optimal packing), suggesting the ionic size to be of importance for intrinsic loss. A fourth power dependence of loss on permittivity has been found which compares well with the theoretically expected dependence. The contribution of two-phonon difference absorption processes due to the nonpolar soft branch influences the microwave loss as evidenced in particular by ε========Prime;(T) measurements. In the case of Nd- and Gd-containing compounds losses related to the paramagnetic subsystem are believed to be the origin of increasing loss with decreasing temperature at 10 GHz. © 1995 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:95-0236441

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Dielectric spectroscopy of Ba(B
<sub>1/2</sub>
<sup></sup>
B
<sub>1/2</sub>
<sup>========Prime;</sup>
)O
<sub>3</sub>
complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies (10
<sup>2</sup>
-10
<sup>12</sup>
Hz)</title>
<author>
<name sortKey="Zurm Hlen, Rudolf" uniqKey="Zurm Hlen R">Rudolf Zurm Hlen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratoire de Céramique, EPFL, 1015 Ecublens, CH-1015 Lausanne, Switzerland</s1>
<sZ>1 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Laboratoire de Céramique, EPFL, 1015 Ecublens, CH-1015 Lausanne</wicri:regionArea>
<wicri:noRegion>CH-1015 Lausanne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petzelt, Jan" uniqKey="Petzelt J">Jan Petzelt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics, Czech Academy of Sciences, 18040 Praha 8, Czech Republic</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Institute of Physics, Czech Academy of Sciences, 18040 Praha 8</wicri:regionArea>
<wicri:noRegion>18040 Praha 8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamba, Stanislav" uniqKey="Kamba S">Stanislav Kamba</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Physics, Czech Academy of Sciences, 18040 Praha 8, Czech Republic</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Institute of Physics, Czech Academy of Sciences, 18040 Praha 8</wicri:regionArea>
<wicri:noRegion>18040 Praha 8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kozlov, Gennadii" uniqKey="Kozlov G">Gennadii Kozlov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of General Physics, Russian Academy of Sciences, 117942 Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Volkov, Alexander" uniqKey="Volkov A">Alexander Volkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of General Physics, Russian Academy of Sciences, 117942 Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gorshunov, Boris" uniqKey="Gorshunov B">Boris Gorshunov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of General Physics, Russian Academy of Sciences, 117942 Moscow</wicri:regionArea>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dube, Dinesh" uniqKey="Dube D">Dinesh Dube</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratoire de Céramique, EPFL, 1015 Ecublens, Switzerland</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Laboratoire de Céramique, EPFL, 1015 Ecublens</wicri:regionArea>
<wicri:noRegion>1015 Ecublens</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tagantsev, Alexander" uniqKey="Tagantsev A">Alexander Tagantsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratoire de Céramique, EPFL, 1015 Ecublens, Switzerland</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Laboratoire de Céramique, EPFL, 1015 Ecublens</wicri:regionArea>
<wicri:noRegion>1015 Ecublens</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Setter, Nava" uniqKey="Setter N">Nava Setter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Laboratoire de Céramique, EPFL, 1015 Ecublens, Switzerland</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Laboratoire de Céramique, EPFL, 1015 Ecublens</wicri:regionArea>
<wicri:noRegion>1015 Ecublens</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">95-0236441</idno>
<date when="1995-05-15">1995-05-15</date>
<idno type="stanalyst">PASCAL 95-0236441 AIP</idno>
<idno type="RBID">Pascal:95-0236441</idno>
<idno type="wicri:Area/Main/Corpus">01CB69</idno>
<idno type="wicri:Area/Main/Repository">01BA28</idno>
<idno type="wicri:Area/Russie/Extraction">001317</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. Appl. Phys.</title>
<title level="j" type="main">Journal of Applied Physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Barium oxides</term>
<term>Ceramics</term>
<term>Dielectric properties</term>
<term>Energy losses</term>
<term>Experimental study</term>
<term>Gadolinium oxides</term>
<term>Indium oxides</term>
<term>Magnesium oxides</term>
<term>Microwave radiation</term>
<term>Neodymium oxides</term>
<term>Niobium oxides</term>
<term>Perovskites</term>
<term>Phase transformations</term>
<term>Tantalum oxides</term>
<term>Tungsten oxides</term>
<term>Yttrium oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>7722C</term>
<term>7722G</term>
<term>7870G</term>
<term>6470K</term>
<term>Perovskites</term>
<term>Céramique</term>
<term>Baryum oxyde</term>
<term>Néodyme oxyde</term>
<term>Gadolinium oxyde</term>
<term>Yttrium oxyde</term>
<term>Indium oxyde</term>
<term>Magnésium oxyde</term>
<term>Tantale oxyde</term>
<term>Niobium oxyde</term>
<term>Tungstène oxyde</term>
<term>Hyperfréquence</term>
<term>Propriété diélectrique</term>
<term>Perte énergie</term>
<term>Transformation phase</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Céramique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dielectric spectroscopy in the submillimeter, millimeter, microwave, and radio frequency range has been performed between 300 and 600 K (for some cases below 300 K) on nine Ba(B
<sub>1/2</sub>
<sup></sup>
B
<sub>1/2</sub>
<sup>========Prime;</sup>
)O
<sub>3</sub>
complex perovskite ceramic compounds. The real part of the permittivity ε′ decreases linearly with the increasing tolerance factor t<1 approaching unity. It is insensitive to imperfections in the ceramic, such as impurities, vacancies, etc., and entirely determined by polar lattice vibrations. Its temperature dependence is influenced by the presence of a structural phase transition observed in six of the investigated compounds. It is shown that the imaginary part of the permittivity ε========Prime; in the submillimeter range is mainly of intrinsic origin. The ε========Prime;(f) dependences were fitted applying a microscopic theory using polar-phonon parameters that have been determined in the phonon resonance region by infrared reflection spectroscopy (Part I). The theory allows the extrapolation of minimum intrinsic loss due to polar-phonon contributions down to the microwave region. The difference between the extrapolated and measured loss at 10 GHz is due to other intrinsic and extrinsic contributions gaining importance at lower frequencies. The submillimeter measurements reveal a systematic loss decrease with the tolerance factor approaching unity (optimal packing), suggesting the ionic size to be of importance for intrinsic loss. A fourth power dependence of loss on permittivity has been found which compares well with the theoretically expected dependence. The contribution of two-phonon difference absorption processes due to the nonpolar soft branch influences the microwave loss as evidenced in particular by ε========Prime;(T) measurements. In the case of Nd- and Gd-containing compounds losses related to the paramagnetic subsystem are believed to be the origin of increasing loss with decreasing temperature at 10 GHz. © 1995 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. Appl. Phys.</s0>
</fA03>
<fA05>
<s2>77</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Dielectric spectroscopy of Ba(B
<sub>1/2</sub>
<sup></sup>
B
<sub>1/2</sub>
<sup>========Prime;</sup>
)O
<sub>3</sub>
complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies (10
<sup>2</sup>
-10
<sup>12</sup>
Hz)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZURMÜHLEN (Rudolf)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PETZELT (Jan)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KAMBA (Stanislav)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KOZLOV (Gennadii)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VOLKOV (Alexander)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GORSHUNOV (Boris)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DUBE (Dinesh)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TAGANTSEV (Alexander)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SETTER (Nava)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratoire de Céramique, EPFL, 1015 Ecublens, CH-1015 Lausanne, Switzerland</s1>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Physics, Czech Academy of Sciences, 18040 Praha 8, Czech Republic</s1>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Laboratoire de Céramique, EPFL, 1015 Ecublens, Switzerland</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>5351-5364</s1>
</fA20>
<fA21>
<s1>1995-05-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© AIP</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>95-0236441</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of Applied Physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Dielectric spectroscopy in the submillimeter, millimeter, microwave, and radio frequency range has been performed between 300 and 600 K (for some cases below 300 K) on nine Ba(B
<sub>1/2</sub>
<sup></sup>
B
<sub>1/2</sub>
<sup>========Prime;</sup>
)O
<sub>3</sub>
complex perovskite ceramic compounds. The real part of the permittivity ε′ decreases linearly with the increasing tolerance factor t<1 approaching unity. It is insensitive to imperfections in the ceramic, such as impurities, vacancies, etc., and entirely determined by polar lattice vibrations. Its temperature dependence is influenced by the presence of a structural phase transition observed in six of the investigated compounds. It is shown that the imaginary part of the permittivity ε========Prime; in the submillimeter range is mainly of intrinsic origin. The ε========Prime;(f) dependences were fitted applying a microscopic theory using polar-phonon parameters that have been determined in the phonon resonance region by infrared reflection spectroscopy (Part I). The theory allows the extrapolation of minimum intrinsic loss due to polar-phonon contributions down to the microwave region. The difference between the extrapolated and measured loss at 10 GHz is due to other intrinsic and extrinsic contributions gaining importance at lower frequencies. The submillimeter measurements reveal a systematic loss decrease with the tolerance factor approaching unity (optimal packing), suggesting the ionic size to be of importance for intrinsic loss. A fourth power dependence of loss on permittivity has been found which compares well with the theoretically expected dependence. The contribution of two-phonon difference absorption processes due to the nonpolar soft branch influences the microwave loss as evidenced in particular by ε========Prime;(T) measurements. In the case of Nd- and Gd-containing compounds losses related to the paramagnetic subsystem are believed to be the origin of increasing loss with decreasing temperature at 10 GHz. © 1995 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70G22C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70G22G</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H70G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60D70K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7722C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7722G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7870G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>6470K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Perovskites</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Perovskites</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Céramique</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Ceramics</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Baryum oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Barium oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Néodyme oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Neodymium oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gadolinium oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gadolinium oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Yttrium oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Yttrium oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Magnésium oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Magnesium oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Tantale oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Tantalum oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Niobium oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Niobium oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Tungstène oxyde</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Tungsten oxides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Hyperfréquence</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Microwave radiation</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Propriété diélectrique</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Dielectric properties</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Perte énergie</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Energy losses</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Transformation phase</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Phase transformations</s0>
</fC03>
<fN21>
<s1>136</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9509M0696</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001317 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 001317 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:95-0236441
   |texte=   Dielectric spectroscopy of Ba(B1/2′B1/2========Prime;)O3 complex perovskite ceramics: Correlations between ionic parameters and microwave dielectric properties. II. Studies below the phonon eigenfrequencies (102-1012 Hz)
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024